z-logo
Premium
List Packing and Correspondence Packing of Planar Graphs
Author(s) -
Cranston Daniel W.,
SmithRoberge Evelyne
Publication year - 2025
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.23222
ABSTRACT For a graphGand a list assignmentLwith∣ L ( v ) ∣ = kfor allv, anL‐packing consists ofL‐coloringsφ 1 , … , φ ksuch thatφ i ( v ) ≠ φ j ( v )for allvand all distincti , j ∈ { 1 , … , k }. Letχ ℓ ⋆ ( G )denote the smallestksuch thatGhas anL‐packing for everyLwith∣ L ( v ) ∣ = kfor allv. LetP kdenote the set of all planar graphs with girth at leastk. We show that (i)χ ℓ ⋆ ( G ) ⩽ 8for allG ∈ P 3and (ii)χ ℓ ⋆ ( G ) ⩽ 5for allG ∈ P 4and (iii)χ ℓ ⋆ ( G ) ⩽ 4for allG ∈ P 5. Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue ofχ ℓ ⋆for correspondence coloring,χ c ⋆. In fact, all bounds stated above forχ ℓ ⋆also hold forχ c ⋆.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom