Premium
List Packing and Correspondence Packing of Planar Graphs
Author(s) -
Cranston Daniel W.,
SmithRoberge Evelyne
Publication year - 2025
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.23222
ABSTRACT For a graphGand a list assignmentLwith∣ L ( v ) ∣ = kfor allv, anL‐packing consists ofL‐coloringsφ 1 , … , φ ksuch thatφ i ( v ) ≠ φ j ( v )for allvand all distincti , j ∈ { 1 , … , k }. Letχ ℓ ⋆ ( G )denote the smallestksuch thatGhas anL‐packing for everyLwith∣ L ( v ) ∣ = kfor allv. LetP kdenote the set of all planar graphs with girth at leastk. We show that (i)χ ℓ ⋆ ( G ) ⩽ 8for allG ∈ P 3and (ii)χ ℓ ⋆ ( G ) ⩽ 5for allG ∈ P 4and (iii)χ ℓ ⋆ ( G ) ⩽ 4for allG ∈ P 5. Part (i) makes progress on a problem of Cambie, Cames van Batenburg, Davies, and Kang. We also consider the analogue ofχ ℓ ⋆for correspondence coloring,χ c ⋆. In fact, all bounds stated above forχ ℓ ⋆also hold forχ c ⋆.
Empowering knowledge with every search
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom