z-logo
Premium
Extended Multivariate EGARCH Model: A Model for Zero‐Return and Negative Spillovers
Author(s) -
Xu Yongdeng
Publication year - 2025
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.3243
Subject(s) - multivariate statistics , zero (linguistics) , econometrics , statistics , economics , mathematics , philosophy , linguistics
ABSTRACT This paper introduces an extended multivariate EGARCH model that overcomes the zero‐return problem and allows for negative news and volatility spillover effects, making it an attractive tool for multivariate volatility modeling. Despite limitations, such as noninvertibility and unclear asymptotic properties of the QML estimator, our Monte Carlo simulations indicate that the standard QML estimator is consistent and asymptotically normal for larger sample sizes (i.e., T ≥ 2500 ). Two empirical examples demonstrate the model's superior performance compared to multivariate GJR‐GARCH and Log‐GARCH models in volatility modeling. The first example analyzes the daily returns of three stocks from the DJ30 index, while the second example investigates volatility spillover effects among the bond, stock, crude oil, and gold markets. Overall, this extended multivariate EGARCH model offers a flexible and comprehensive framework for analyzing multivariate volatility and spillover effects in empirical finance research.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here