Premium
Influence of Green Nanofillers on the Morphological, Mechanical Properties, and Degradation Kinetics of PBS / PBAT Blends: A Potential Sustainable Strategy for Fisheries Applications
Author(s) -
Hamou Yousra Nait,
Benali Samira,
Benomar Mostapha,
Gennen Sandro,
Thomassin JeanMichel,
Tchoumtchoua Job,
ErRaioui Hassan,
Raquez JeanMarie
Publication year - 2025
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.56959
Subject(s) - degradation (telecommunications) , kinetics , chemical engineering , chemistry , materials science , computer science , physics , engineering , telecommunications , quantum mechanics
ABSTRACT Synthetic nylon fishing nets pose significant threats to marine ecosystems, contributing to ghost fishing and microplastic pollution. While the development of biodegradable polymers for marine applications has progressed, significant challenges remain in achieving the mechanical performance required for fishing nets, particularly under water conditions. This study addresses these challenges by investigating the incorporation of nanochitin and nanocellulose fillers into PBS/PBAT blends, aiming to optimize their mechanical properties and to control the degradation behavior for marine environments. First, various PBS/PBAT nanocomposites were prepared with chitin and cellulose nanofillers, and tensile tests identified the most effective fillers for mechanical reinforcement. Differential scanning calorimetry (DSC), size exclusion chromatography (SEC), and scanning electron microscopy (SEM). The results demonstrated significant mechanical reinforcement in air conditions, with efficient nanofiller dispersion, particularly in two nanocomposites: PBS/PBAT/ChNCsLac 1% and PBS/PBAT/NFCEster 1% . These formulations exhibited notable improvements in mechanical properties compared to the other blends. Specifically, Young's modulus increased by +15% and + 22%, respectively, while elongation at break improved by +10% and + 7%, respectively. Under aqueous conditions, PBS/PBAT/ChNCsLac 1% also showed a remarkable +52% increase in elongation at break. Additionally, weathering tests were also examined the nanofillers' influence on degradation kinetics, revealing that chitin nanofillers accelerated degradation under controlled conditions. These findings suggest that while nanochitins and nanocelluloses improve mechanical properties in certain environments, further research is required to optimize their performance in water.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom