Premium
Fluid Chemistry of Metal Halide Perovskites
Author(s) -
Chen Changshun,
Yao Qing,
Wang Jinpei,
Ran Chenxin,
Chao Lingfeng,
Xia Yingdong,
Chen Yonghua
Publication year - 2025
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202503593
Subject(s) - crystallization , halide , perovskite (structure) , chemistry , nanotechnology , fluid dynamics , chemical physics , chemical engineering , materials science , inorganic chemistry , thermodynamics , organic chemistry , physics , engineering
Abstract Solution‐processed metal halide perovskites (MHPs) have been rapidly developed worldwide, with much attention to fluid dynamic, fluid crystallization, and fluid interfaces, all falling within the realm of fluid chemistry. It is widely recognized that the theory of fluid chemistry has been proven to provide an effective means for the improvement of perovskite crystallization and the enhancement of perovskite solar cells (PSCs) performance. In this review, the fluid behavior, microfluidic synthesis, and aging process of perovskite materials are first investigated, with emphasis on the related improvement methods and chemical mechanisms. Second, the internal crystallization chemistry, external interface chemistry, and the large‐area PSCs based on the fluid chemistry are discussed. Finally, four specific directions for future studies of fluid chemistry of MHPs are proposed, aiming to harness the theoretical advantages of fluid chemistry and contribute to the industrialization of PSCs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom