z-logo
Premium
DNA Nanotubule‐Based Nanodevices with ATP‐Responsive Gating for Direct Cytosolic Delivery of Nucleic Acids and Proteins
Author(s) -
Gao Di,
Xu Ziqi,
Li Xiangli,
Zhao Yuhan,
Min Qianhao,
Chen Zixuan,
Xu Qin,
Tian Ye,
Xu Junpeng,
Zhu JunJie
Publication year - 2025
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.202505290
Abstract Delivering biomacromolecules to the cytosol remains a formidable challenge, as these molecules are predominantly sequestered within endosomes after endocytosis. The limited efficacy of current delivery systems in promoting reliable endosomal escape underscores the need for innovative strategies. Here, we report a DNA origami nanotubule to construct transmembrane delivery nanodevices with size‐selective gating and ATP‐responsive channel activation. By integrating unilamellar vesicles as large storage compartments, these nanodevices can encapsulate a wide range of macromolecules, including small interfering RNA, messenger RNA, plasmid DNA, and CRISPR‐Cas9 ribonucleoprotein complexes. By bypassing traditional endocytic pathways, the nanotubules enable the delivery of substantial payload quantities directly across the plasma membrane. This approach provides a promising platform for delivering macromolecular therapeutics into the cytosol, advancing gene therapy strategies, and broadening their biomedical applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom