Premium
Non‐Fickian mesoscopic modeling of sorption and permeation in polymer nanocomposite membranes
Author(s) -
El Rhali Youness,
El Afif Ali
Publication year - 2025
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.18841
Subject(s) - permeation , mesoscopic physics , sorption , membrane , fick's laws of diffusion , nanocomposite , polymer , chemical engineering , materials science , polymer chemistry , polymer science , chemistry , diffusion , thermodynamics , composite material , physics , adsorption , engineering , condensed matter physics , biochemistry
Abstract To investigate the interactions among nanoscale effects, viscoelasticity, and diffusion in polymer nanocomposite membranes, we have developed a non‐Fickian mesoscopic model that describes the dynamics of penetrant concentration and the polymer conformation tensor. The model consists of nonlinear governing equations, supplemented by an expression for internal stresses. Key dimensionless parameters are crucial to the analysis: structure‐mixing constantg m , diffusion Deborah numberDe m , nanofillers content wt % and aspect ratio α , and orientation parameter. Numerical simulations demonstrate their effects on mass uptake, concentration, conformation, local and accumulated stresses, and permeation fluxes. Non‐Fickian diffusion arises asDe mapproaches unity. The maximum stress decreases withg mand α , but increases withDe mor wt % . The permeation time lag increases withg m ,De m ,α , and wt % . The model's predictions show good agreement with sorption and permeation data.
Empowering knowledge with every search
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom