z-logo
Premium
Polymeric Layered Films for TiO 2 ‐Au/CuS Tandem Photothermal Catalytic H 2 Production in Harsh Seawater and Waste Plastic Media
Author(s) -
Gao Minmin,
Zhang Tianxi,
Ng Serene Wen Ling,
Lu Wanheng,
Tian Guo,
Ong Wei Li,
Kozlov Sergey M.,
Ho Ghim Wei
Publication year - 2025
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202404198
Subject(s) - materials science , seawater , photothermal therapy , catalysis , chemical engineering , tandem , nanotechnology , composite material , organic chemistry , oceanography , chemistry , geology , engineering
Abstract Conventional suspension photocatalysts face stability and efficiency challenges in harsh, unconditioned environments characterized by high alkalinity, salinity, and organic species in seawater and wastewater. Moreover, suspension‐based photothermal‐assisted catalysis presents further challenges, particularly concerning formation of heterojunctions between photocatalysts and photothermal materials that disrupt charge‐transfer pathways and are exacerbated by photothermal heating‐induced carrier recombination. Here, a photocatalytic system is proposed in which three key photoprocesses: photothermal, photogeneration‐charge separation, and photoredox are spatially decoupled yet coordinated, aimed at addressing prevalent challenges of photothermal‐assisted catalysis and adsorption‐mediated catalyst deactivation in harsh environments. Essentially, the proposed polymeric tandem photothermal catalytic (PTPC) film consists of TiO 2 /Au photocatalytic and CuS photothermal layers, spatially separated and encapsulated by polymeric layers, which serve as spacer inhibitors to conflicting photochemical‐photothermal pathways and corrosion‐resistant redox medium. The PTPC film exhibits enhanced light absorption, mass transfer, and photothermal effect, surpassing traditional suspension catalysts and enabling interfacial redox reactions on the passive film surface. The PTPC system represents a new paradigm of polymeric film photocatalysis, enabling unimpeded photoredox‐photothermal pathways and catalyst stability for application in hostile seawater and plastic waste environments. Such a paradigm can be used to develop localized, onsite solutions for photothermal H 2 production that minimize logistical and environmental challenges.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom