z-logo
open-access-imgOpen Access
UGDH Lactylation Aggravates Osteoarthritis by Suppressing Glycosaminoglycan Synthesis and Orchestrating Nucleocytoplasmic Transport to Activate MAPK Signaling
Author(s) -
Lan Weiren,
Chen Xueman,
Yu Huai,
Ruan Jianzhao,
Kang Jingliang,
Nie Xiaoyu,
Cao Yumei,
Tang Su'an,
Ding Changhai
Publication year - 2025
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202413709
Subject(s) - mapk/erk pathway , microbiology and biotechnology , kinase , signal transduction , protein kinase a , chemistry , biology , biochemistry
Abstract Osteoarthritis (OA) progression is closely related to dysregulated glycolysis. As the primary metabolite of glycolysis, lactate plays a detrimental role in OA. However, how lactate exacerbates OA process remains unclear. Here, this study revealed that lactate levels are elevated in the synovial fluid of OA patients and IL‐1β‐treated human primary chondrocytes, promoting protein pan‐lactylation. Functionally, hyper‐lactylation exacerbates chondrocytes extracellular matrix (ECM) degradation and cell apoptosis in vitro and in vivo. Moreover, UDP‐glucose dehydrogenase (UGDH) is proven to be the key lactylated protein in lactate‐treated chondrocytes, which undergoes lactylation at lysine 6 (K6). Lactylated UGDH repressed its enzymatic activity, reducing glycosaminoglycan synthesis and disregulating its nuclear‐cytoplasmic distribution. Mechanistically, K6 lactylation of UGDH impedes the interaction of UGDH and signal transducer and activator of transcription 1 (STAT1), thus promoting the transcription of mitogen‐activated protein kinase kinase kinase 8 (MAP3K8) and activating the MAPK signaling pathway. Importantly, in vitro and in vivo treatment with A485, a specific acyltransferase P300 inhibitor, suppressed UGDH lactylation and rescued chondrocytes ECM degradation and OA progression. These findings uncover a new mechanism underlying OA pathogenesis and highlight the potential of targeting UGDH lactylation as a novel therapeutic strategy for OA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom