z-logo
Premium
Regulating Carrier Transport Behavior for Capacitive Energy Storage of Polymer Dielectrics in Harsh Environments
Author(s) -
Fan Kun,
Li Xiang,
Liu Xiangyang,
He Xin,
Dang ZhiMin
Publication year - 2025
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202417181
Subject(s) - materials science , capacitive sensing , dielectric , energy storage , polymer , nanotechnology , optoelectronics , engineering physics , electrical engineering , composite material , power (physics) , engineering , physics , quantum mechanics
Abstract Polymer dielectrics with high capacitive energy‐storage levels in harsh environments have become key components in electrostatic capacitors. However, excessive losses in polymer dielectrics caused by high carrier densities at high temperatures and strong electric fields often result in low energy storage efficiency, which is the most challenging problem that urgently needs to be solved. In existing studies, the losses are mainly suppressed by limiting carrier formation; however, it is very challenging to completely limit carrier formation, especially at high temperatures and strong electric fields. Therefore, this perspective proposes to regulate the carrier transport behavior through “guiding/constraining/blocking” forms rather than the previously oversimplified carrier limitation strategy, which further clarifies dominant structure factors that inhibit carrier transport to reduce losses and enhance energy storage efficiency. Meanwhile, the influence of different structural designs on carrier transport behavior, individually or collaboratively, must be systematically studied to determine the specific mode of carrier transport behavior, thereby establishing a relationship between carrier transport behavior and energy storage efficiency. The presented perspective is expected to offer a novel and effective theoretical basis for the design and fabrication of advanced polymer dielectrics with high capacitive energy storage levels in harsh environments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom