z-logo
Premium
Data Readout Techniques for DNA‐Based Information Storage
Author(s) -
Liu Bingyi,
Wang Fei,
Fan Chunhai,
Li Qian
Publication year - 2025
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202412926
Subject(s) - materials science , computer data storage , dna , nanotechnology , information storage , systems engineering , database , computer science , computer hardware , biology , genetics , engineering
Abstract DNA is a natural chemical substrate that carries genetic information, which also serves as a powerful toolkit for storing digital data. Compared to traditional storage media, DNA molecules offer higher storage density, longer lifespan, and lower maintenance energy consumption. In DNA storage process, data readout is a critical step that bridges the gap between DNA molecular/structures with stored digital information. With the continued development of strategies in DNA data storage technology, the readout techniques have evolved. However, there is a lack of systematic introduction and discussion on the readout techniques for reported DNA data storage systems, especially the correlation between the design of the data storage system and the corresponding selection of readout techniques. This review first introduces two main categories of DNA data storage units (i.e., sequence and structure) and their corresponding readout techniques (i.e., sequencing and nonsequencing methods), and then reviewed representative examples of notable advancements in DNA data storage technology, focusing on data storage unit design, and readout technique selection. It also introduces emerging approaches to assist data readout techniques, such as implementation of microfluidic and fluorescent probes. Finally, the paper discusses the limitations, challenges, and potential of DNA data readout approaches.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom