z-logo
Premium
Hydrogen Bond Competition Optimizing Aqueous Zn Ion Solvation and (002) Interfacial Deposition with Ultralong Stability
Author(s) -
Xiao Zhe,
Dai Xiangyu,
Zhu Jianfang,
Liu Dongming,
Liu Luzhi,
Liu Xueping,
Li Yun,
Qian Zhengfang,
Wang Renheng
Publication year - 2025
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202424860
Subject(s) - materials science , solvation , aqueous solution , deposition (geology) , hydrogen bond , chemical engineering , ion , chemical physics , hydrogen , nanotechnology , chemistry , organic chemistry , molecule , paleontology , physics , sediment , engineering , biology
Abstract Aqueous zinc‐ion batteries have garnered significant interest due to their inherent safety, cost‐effectiveness, and high capacity. However, water molecules in the electrolyte adsorb onto the surface of the negative zinc electrode via hydrogen bonding and dissociate into H + and OH − under an electric field. This creates a local alkaline environment at the interface, promoting zinc dendrite growth, surface corrosion, and hydrogen evolution reaction. Herein, a hydrogen bond competition strategy for optimizing aqueous electrolytes based on low‐cost polyhydroxyl organic additive maltitol is proposed. The addition of maltitol disrupts the hydrogen bond network of the aqueous electrolyte and reduces the activity of water molecules, replacing one of the water molecules in the solvation structure [Zn(H 2 O) 6 ] 2+ . Additionally, maltitol preferentially adsorbs on the Zn (002) surface compared to water molecules. This stable deposition of the Zn (002) crystal faces inhibits dendrite growth and hydrogen evolution. The Zn||Zn symmetric battery assembled with 0.4  m maltitol has an ultralong cycle time of 4500 h at 1 mA cm −2 , 1 mAh cm −2 . Zn||NH 4 V 4 O 10 full batteries also show better cycling performance than non‐additive devices.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom