z-logo
Premium
Tongue Prick Bionic Angularly Adjustable Microneedles for Enhanced Scarless Wound Healing
Author(s) -
Gan Ni,
Li Xin,
Wei Meng,
Li Zhijie,
Zhou Shu,
Gao Bingbing
Publication year - 2025
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202422602
Subject(s) - materials science , wound healing , biomedical engineering , medicine , surgery
Abstract High‐tension site wounds are frequently accompanied by challenges associated with hypertrophic scarring. The key to achieving scar‐free healing is the creation of a mechanical environment conducive to scar‐free skin regeneration. Herein, simple rolling punctures are utilized on angle transform molds to develop cat tongue prick bionic angle‐adjustable microneedles (TPMNs) to maintain a firm grip on the periwound skin, thereby reducing tissue tension. The integration of TPMNs with triboelectric nanogenerators (TENGs) enables excellent conductive and triboelectric properties. The system can provide a stable spatial electric field around the wound to promote cell migration. As the microfluid reaches the TPMNs, the self‐driving force is enhanced by a unique angle design to control the microfluid flow rate. Sufficient evidence has shown that TPMNs expedite wound contraction and skin tissue regeneration while concurrently reducing scar formation in mouse trauma model experiments. The innovative TPMNs‐TENGs synergistically provides a highly functional platform for wound tension relief, which is suitable for scar treatment in this study and potentially extends to the construction and regulation of smart wearable devices.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom