z-logo
Premium
Infrared Ultralow‐Emissivity Polymeric Metafabric Conductors Enabling Remarkable Electromagnetic and Thermal Management
Author(s) -
Yu Ruiqi,
Wang Mengyao,
Lu Weifang,
Wang Jingshi,
Cao Yanxia,
Yang Yanyu,
Wang Wanjie,
Wang Jianfeng
Publication year - 2025
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202421347
Subject(s) - emissivity , materials science , electrical conductor , infrared , thermal management of electronic devices and systems , optoelectronics , thermal , low emissivity , electromagnetic radiation , far infrared , engineering physics , nanotechnology , composite material , optics , mechanical engineering , physics , layer (electronics) , meteorology , engineering
Abstract Infrared ultralow‐emissivity fabric has garnered significant interest for applications in infrared stealth and personal thermal management. However, reconciling the competing demands of low emissivity, breathability, and mechanical strength poses a formidable challenge. Here, an air‐permeable polymeric metafabric distinguished by a unique non‐through‐hole structure is presented. This design is achieved through the electroless plating of silver nanoparticles onto commercially available nylon fabric, supplemented by an intermediate layer of hot‐processed nylon porous mesh. This metafabric demonstrates an ultralow emissivity of 0.044, an exceptional electrical conductivity of 51 315 S m −1 , an impressive electromagnetic interference shielding efficiency of 78 dB, and a high tensile strength of 110 MPa. The emissivity, conductivity, and strength of the metafabric are among the highest values reported for infrared low‐emissivity fabrics. The metafabric also exhibits an air permeability that conforms to Grade 2 of international standards. The metafabric facilitates personal precision heating across diverse environments through its integrated capabilities of passive radiative and active solar/Joule heating. Additionally, the metafabric displays antibacterial properties, flame retardancy, sweat absorption, quick‐drying, and washability performance, thereby significantly enhancing its wearability. This high‐performance, multifunctional, infrared ultralow‐emissivity polymeric metafabric holds great promise for applications in infrared camouflage, electromagnetic protection, and personal thermal management.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom