z-logo
Premium
Programmable DNA‐Peptide Conjugated Hydrogel via Click Chemistry for Sequential Modulation of Peripheral Nerve Regeneration
Author(s) -
Wei Zhenyuan,
Li Xiaoxiao,
Chen Yicheng,
Han Zhaopu,
Li Yan,
Gan Lin,
Yang Yang,
Chen Yujie,
Zhang Feng,
Ye Xiaojian,
Cui Wenguo
Publication year - 2025
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202419915
Subject(s) - click chemistry , materials science , conjugated system , regeneration (biology) , peptide , peripheral nerve , self healing hydrogels , biophysics , dna , combinatorial chemistry , biomedical engineering , nanotechnology , polymer chemistry , polymer , biochemistry , chemistry , anatomy , microbiology and biotechnology , biology , composite material , medicine
Abstract During peripheral nerve regeneration, current deoxyribonucleic acid (DNA)‐based therapeutic platforms face the challenge of precisely regulating Schwann cells (SCs) fate to sustain their repair phenotype due to their inability to stably and precisely integrate multiple bioactive components. Herein, the strain‐promoted azide–alkyne cycloaddition reaction is utilized to integrate the neurotrophic factor mimetic peptide RGI and the laminin‐derived peptide IKVAV into DNA monomers. Through DNA sequence self‐assembly, a programmable DNA‐peptide conjugated hydrogel is constructed for loading bone marrow mesenchymal stem cell‐derived exosomes. This programmable hydrogel can rapidly, stably, and precisely integrate various bioactive components into the hydrogel network, thereby enabling sequential modulation of peripheral nerve repair. In vitro, studies show that this hydrogel, through sequential modulation mechanisms, can activate the neuregulin‐1 (Nrg1)/ErbB pathway to induce the reprogramming of SCs and promote the recruitment and proliferation of repair SCs. The induced repair SCs promote neuronal axon outgrowth and enhance tube formation in endothelial cells. In vivo, this programmable hydrogel can gelate in situ through intraneural injection in a rat sciatic nerve crush injury model, promoting nerve regeneration and functional recovery. In summary, this work provides an effective and practical strategy for peripheral nerve regeneration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom