
DEEP LEARNING FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES WITH RICH SPECTRAL CONTENT
Author(s) -
A. Ben Hamida,
Alexandre Benoit,
P. Lambert,
L. Klein,
Chokri Ben Amar,
Nicolas Audebert,
Sébastien Lefèvre
Publication year - 2017
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
Resource type - Conference proceedings
Subject(s) - computer science , segmentation , artificial intelligence , image segmentation , content (measure theory) , deep learning , computer vision , remote sensing , natural language processing , pattern recognition (psychology) , geology , mathematics , mathematical analysis