z-logo
open-access-imgOpen Access
Leveraging Random Survival Forest (RSF) and PET images for prognosis of Multiple Myeloma at diagnosis
Author(s) -
Ludivine Morvan,
Thomas Carlier,
Clément Bailly,
Bastien Jamet,
Caroline BodetMilin,
Philippe Moreau,
Cyrille Touzeau,
Françoise KraeberBodéré,
Diana Mateus
Publication year - 2019
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
Resource type - Conference proceedings
Subject(s) - censoring (clinical trials) , concordance , multiple myeloma , medicine , context (archaeology) , survival analysis , random forest , robustness (evolution) , population , oncology , radiology , nuclear medicine , artificial intelligence , pathology , computer science , paleontology , biochemistry , chemistry , environmental health , gene , biology

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here