z-logo
open-access-imgOpen Access
Leveraging Random Survival Forest (RSF) and PET images for prognosis of Multiple Myeloma at diagnosis
Author(s) -
Ludivine Morvan,
Thomas Carlier,
Clément Bailly,
Bastien Jamet,
Caroline BodetMilin,
Philippe Moreau,
Cyrille Touzeau,
Francoise M Kraeber-Bodere,
Diana Mateus
Publication year - 2019
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
Resource type - Conference proceedings
Subject(s) - censoring (clinical trials) , concordance , multiple myeloma , medicine , context (archaeology) , survival analysis , random forest , robustness (evolution) , population , oncology , radiology , nuclear medicine , artificial intelligence , pathology , computer science , paleontology , biochemistry , chemistry , environmental health , gene , biology

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom