
Predicting sunflower grain yield using remote sensing data and statistical models
Author(s) -
Arnaud Micheneau,
Luc Champolivier,
Jean-François Dejoux,
Al Bitar Ahmad,
Célia Pontet,
Ronan Trépos,
Philippe Debaeke
Publication year - 2017
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
Resource type - Conference proceedings
Subject(s) - sunflower , yield (engineering) , grain yield , computer science , remote sensing , statistical model , environmental science , agricultural engineering , agronomy , artificial intelligence , geology , engineering , materials science , metallurgy , biology