
UCSL : A Machine Learning Expectation-Maximization framework for Unsupervised Clustering driven by Supervised Learning
Author(s) -
Robin Louiset,
Pietro Gori,
Benoit Dufumier,
Josselin Houenou,
Antoine Grigis,
Edouard Duchesnay
Publication year - 2021
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
Resource type - Conference proceedings
Subject(s) - unsupervised learning , computer science , cluster analysis , artificial intelligence , machine learning , expectation–maximization algorithm , conceptual clustering , semi supervised learning , supervised learning , maximization , correlation clustering , maximum likelihood , artificial neural network , canopy clustering algorithm , mathematics , statistics , mathematical optimization