
Reliable outlier detection by spectral clustering on Riemannian manifold of EEG covariance matrix
Author(s) -
Maria Sayu Yamamoto,
Khadijeh Sadatnejad,
Saiful Islam,
Fabien Lotte,
Toshihisa Tanaka
Publication year - 2021
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
Resource type - Conference proceedings
Subject(s) - covariance matrix , spectral clustering , pattern recognition (psychology) , cluster analysis , outlier , riemannian manifold , anomaly detection , electroencephalography , artificial intelligence , covariance , computer science , matrix (chemical analysis) , manifold (fluid mechanics) , mathematics , algorithm , statistics , psychology , pure mathematics , engineering , materials science , composite material , mechanical engineering , psychiatry