P/G TSV planning for IR-drop reduction in 3D-ICs
Author(s) -
Shengcheng Wang,
Farshad Firouzi,
Fabian Oboril,
Mehdi B. Tahoori
Publication year - 2014
Publication title -
2014 design, automation and test in europe conference and exhibition (date)
Language(s) - English
Resource type - Conference proceedings
eISSN - 1558-1101
pISSN - 1530-1591
ISBN - 978-3-9815370-2-4
DOI - 10.7873/date.2014.057
Subject(s) - communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing
In recent years, interconnect issues emerged as major performance challenges for Two-Dimensional-Integrated-Circuits (2D-ICs). In this context, Three-Dimensional-ICs (3D-ICs), which consist of several active layers stacked above each other, offer a very attractive alternative to conventional 2D-ICs. However, 3D-ICs also face many challenges associated with the Power Distribution Network (PDN) design due to the increasing power density and larger supply current compared to 2D-ICs. As an important part of 3D-IC PDNs, Power/Ground (P/G) Through-Silicon-Vias (TSVs) should be well-managed. Excessive or ill-placed P/G TSVs impact the power integrity (e.g. IR-drop), and also consume a considerable amount of chip real estate. In this work, we propose a Mixed-Integer-Linear-Programming (MILP)-based technique to plan the P/G TSVs. The goal of our approach is to minimize the average IR-drop while satisfying the total area constraint of TSVs by optimizing the P/G TSV placement. Therefore, the locations, sizes and the total number of the P/G TSVs are co-optimized simultaneously. The experimental results show that the average IR-drop can be reduced by 11.8 % in average using the proposed method compared to a random placement technique with a much smaller runtime.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom