z-logo
open-access-imgOpen Access
Influence of waste marble powder as a replacement of cement on the properties of mortar
Author(s) -
Kenan Yamanel,
Uğur Durak,
Serhan İlkentapa,
İsmail İsa Atabey,
Okan Karahan,
Cengiz Duran Atiş
Publication year - 2019
Publication title -
revista de la construcción
Language(s) - English
Resource type - Journals
eISSN - 0718-915X
pISSN - 0717-7925
DOI - 10.7764/rdlc.18.2.290
Subject(s) - carbonation , mortar , shrinkage , materials science , absorption of water , cement , compressive strength , curing (chemistry) , composite material , metallurgy
DOI: 10.7764/RDLC.18.2.290 The demand for cement usage increases in the world, currently. It is known that using industrial waste materials in concrete as cement or aggregate replacement as part of waste management as well as conserving natural resources is getting wider. Due to these facts, in this work, an investigation was carried out on the utilization of waste marble powders as cement replacement mineral materials. In this context, marble powder replaced cement at 5%, 10%, 15% and 20% in mass basis, and mortars were produced. In mortar mixtures, water-binder ratio was chosen as 0.5, and sand-binder ratio was taken as 3. Workability of fresh mortar was measured. Unit weight, water absorption, and porosity, compressive and flexural strengths, abrasion, carbonation and drying shrinkage measurements testing were carried out on hardened mortar specimens. Influence of elevated temperature on hardened mortar mixture was also investigated. As a result of laboratory study, it is concluded that replacing marble powder with cement result with a favourable contribution to workability of fresh mortar, as well as resistance to elevated temperature. It also reduced drying shrinkage of mortar in comparison to reference mortar made without marble powder. However, it influenced water absorption, abrasion, and carbonation resistance of mortar, unfavourably. For short term curing duration, replacement of marble powder with cement reduced compressive strength insignificantly for 5% and 10% marble powder replacement, but, reduced it significantly for 15% and 20%. However, at long term curing at 90 days, the difference between strength of reference mortar and marble containing mortar was diminished, particularly for mortar containing 5% and 10% marble powder.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom