Proanthocyanidins reduce cellular function in the most globally diagnosed cancers in vitro
Author(s) -
Sarah Albogami
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.9910
Subject(s) - dapi , apoptosis , trypan blue , mtt assay , cell growth , viability assay , cancer research , in vitro , growth inhibition , caspase 3 , cell culture , cancer , colorectal cancer , microbiology and biotechnology , cell , chemistry , biology , medicine , programmed cell death , biochemistry , genetics
Background Growing evidence indicates that proanthocyanidins (PACs) may be effective in treating and preventing various cancers. The fundamental mechanism of PACs inhibiting the proliferation at cellular and molecular levels in most of the cancer types remains unclear. Objective The anticancer efficacy of PACs was investigated in vitro using three human cancer cell lines: human colorectal adenocarcinoma (HT-29), human breast carcinoma (MCF-7), and human prostatic adenocarcinoma (PC-3). Methods Cytotoxicity was evaluated by MTT assay, while cell proliferation was measured by trypan blue exclusion method. Cell migration was measured by wound healing assay, and DAPI staining was used to evaluate apoptotic nucleus morphology. RT-PCR was used to analyze the expression of Bax and Bcl-2 , and caspase enzyme activity assay was measured by caspase colorimetric assay. Results PACs could inhibit both cellular viability and proliferation in a concentration- and time-dependent fashion in all investigated cells. Further, all tested cells showed similarly decreased migration after 24- and 48-h PAC treatment. We observed increased apoptotic nucleus morphology in treated cells ( p ≤ 0.01). BAX expression significantly increased in HT-29 ( p < 0.01), PC-3( p < 0.01), and MCF-7 ( p < 0.05) cells, while BCL-2 expression significantly declined ( p < 0.05). Caspase activities were significantly increased in all tested cancer cell lines after 24-h PAC treatment. Conclusion PACs may have potential therapeutic properties against colorectal, breast, and prostate cancer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom