z-logo
open-access-imgOpen Access
Biochemical parameters, dynamic tensiometry and circulating nucleic acids for cattle blood analysis: a review
Author(s) -
Sergei Yu. Zaitsev,
N. V. Bogolyubova,
Xuying Zhang,
Bertram Brenig
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.8997
Subject(s) - nucleic acid , digital polymerase chain reaction , biological fluids , biology , bilirubin , nucleic acid quantitation , computational biology , dna , holstein cattle , polymerase chain reaction , biochemistry , physiology , chemistry , chromatography , gene , endocrinology
The animal’s blood is the most complicated and important biological liquid for veterinary medicine. In addition to standard methods that are always in use, recent technologies such as dynamic tensiometry (DT) of blood serum and PCR analysis of particular markers are in progress. The standard and modern biochemical tests are commonly used for general screening and, finally, complete diagnosis of animal health. Interpretation of major biochemical parameters is similar across animal species, but there are a few peculiarities in each case, especially well-known for cattle. The following directions are discussed here: hematological indicators; “total protein” and its fractions; some enzymes; major low-molecular metabolites (glucose, lipids, bilirubin, etc.); cations and anions. As example, the numerous correlations between DT data and biochemical parameters of cattle serum have been obtained and discussed. Changes in the cell-free nucleic acids (cfDNA) circulating in the blood have been studied and analyzed in a variety of conditions; for example, pregnancy, infectious and chronic diseases, and cancer. CfDNA can easily be detected using standard molecular biological techniques like DNA amplification and next-generation sequencing. The application of digital PCR even allows exact quantification of copy number variations which are for example important in prenatal diagnosis of chromosomal aberrations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom