z-logo
open-access-imgOpen Access
Filamentous cyanobacteria preserved in masses of fungal hyphae from the Triassic of Antarctica
Author(s) -
Carla J. Harper,
Edith L. Taylor,
Michael Krings
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.8660
Subject(s) - precambrian , hypha , lyngbya , cyanobacteria , botany , biology , genus , algae , geology , paleontology , ecology , bacteria
Permineralized peat from the central Transantarctic Mountains of Antarctica has provided a wealth of information on plant and fungal diversity in Middle Triassic high-latitude forest paleoecosystems; however, there are no reports as yet of algae or cyanobacteria. The first record of a fossil filamentous cyanobacterium in this peat consists of wide, uniseriate trichomes composed of discoid cells up to 25 µm wide, and enveloped in a distinct sheath. Filament morphology, structurally preserved by permineralization and mineral replacement, corresponds to the fossil genus Palaeo-lyngbya , a predominantly Precambrian equivalent of the extant Lyngbya sensu lato (Oscillatoriaceae, Oscillatoriales). Specimens occur exclusively in masses of interwoven hyphae produced by the fungus Endochaetophora antarctica , suggesting that a special micro-environmental setting was required to preserve the filaments. Whether some form of symbiotic relationship existed between the fungus and cyanobacterium remains unknown.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom