z-logo
open-access-imgOpen Access
Effect of different heterotrophic plate count methods on the estimation of the composition of the culturable microbial community
Author(s) -
Eva Theres Gensberger,
Eva-Maria Gössl,
Livio Antonielli,
Angela Sessitsch,
Tanja Kostić
Publication year - 2015
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.862
Subject(s) - citrobacter , heterotroph , abundance (ecology) , relative species abundance , bacilli , 16s ribosomal rna , biology , environmental science , composition (language) , bacteria , enterobacteriaceae , food science , ecology , biochemistry , linguistics , genetics , philosophy , escherichia coli , gene
Heterotrophic plate counts (HPC) are routinely determined within the scope of water quality assessment. However, variable HPC methods with different cultivation parameters (i.e., temperature and media type) are applied, which could lead to significant effects in the outcome of the analysis. Therefore the effect of different HPC methods, according to DIN EN ISO 6222 and EPA, on the culturable microbial community composition was investigated by 16S rRNA gene sequence analysis and statistical evaluation was performed. The culturable community composition revealed significant effects assigned to temperature ( p < 0.01), while for media type no statistical significance was observed. However, the abundance of certain detected bacteria was affected. Lower temperature (22 °C) showed the abundance of naturally occurring Pseudomonadaceae and Aeromonadaceae, whereas at high temperature (37 °C) numerous Enterobacteriaceae, Citrobacter spp. and Bacilli were identified. The highest biodiversity was detected at lower temperature, especially on R2A medium. These results indicate that different temperatures (low and high) should be included into HPC measurement and selection of media should, ideally, be adjusted to the monitored water source. Accordingly, it can be inferred that the HPC method is more suitable for continuous monitoring of the same water source than for single assessments of a water sample.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom