z-logo
open-access-imgOpen Access
Optimization of aeration enhanced surfactant soil washing for remediation of diesel-contaminated soils using response surface methodology
Author(s) -
Befkadu Abayneh Ayele,
Jun Lü,
Quanyuan Chen
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.8578
Subject(s) - pulmonary surfactant , environmental remediation , diesel fuel , aeration , contamination , soil contamination , organic matter , environmental science , central composite design , soil water , pollutant , environmental engineering , pulp and paper industry , particle size , chemistry , environmental chemistry , response surface methodology , soil science , chromatography , ecology , biochemistry , organic chemistry , engineering , biology
Surfactant-enhanced soil washing has been used for remediation of organic pollutants for an extended period, but its effectiveness and wide application was limited by the high concentration of surfactants utilized. In this work, the efficiency of conventional soil washing performance was enhanced by 12–25% through the incorporation of air bubbles into the low concentration surfactant soil washing system. Surfactant selection pre-experiment using aerated and conventional soil washing reveals Brij 35 > TX100 > Tween 80 > Saponin in diesel oil removal. Optimization of the effect of time, surfactant concentration, pH, agitation speed, and airflow rate in five levels were undertaken using Response Surface Methodology and Central composite design. The optimum degree of variables achieved was 90 min of washing time, 370 mg/l of concentration, washing pH of 10,535 rpm of agitation speed and 7.2 l/min of airflow rate with 79.5% diesel removal. The high predicted R 2 value of 0.9517 showed that the model could efficiently be used to predict diesel removal efficiency. The variation in efficiency of aeration assisted and conventional soil washing was variable depending on the type of surfactant, organic matter content of the soil, particle size distribution and level of pollutant weathering. The difference in removal efficiency of the two methods increases when the level of organic matter increases and when the particle size and age of contamination decreases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom