z-logo
open-access-imgOpen Access
Identification of biological pathways and genes associated with neurogenic heterotopic ossification by text mining
Author(s) -
Yichong Zhang,
Yuanbo Zhan,
Yuhui Kou,
Xiaofeng Yin,
Yanhua Wang,
Dianying Zhang
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.8276
Subject(s) - heterotopic ossification , identification (biology) , ossification , gene , biological pathway , computational biology , bioinformatics , biology , neuroscience , anatomy , genetics , ecology , gene expression
Background Neurogenic heterotopic ossification is a disorder of aberrant bone formation affecting one in five patients sustaining a spinal cord injury or traumatic brain injury (SCI-TBI-HO). However, the underlying mechanisms of SCI-TBI-HO have proven difficult to elucidate. The aim of the present study is to identify the most promising candidate genes and biological pathways for SCI-TBI-HO. Methods In this study, we used text mining to generate potential explanations for SCI-TBI-HO. Moreover, we employed several additional datasets, including gene expression profile data, drug data and tissue-specific gene expression data, to explore promising genes that associated with SCI-TBI-HO. Results We identified four SCI-TBI-HO-associated genes, including GDF15, LDLR, CCL2, and CLU. Finally, using enrichment analysis, we identified several pathways, including integrin signaling, insulin pathway, internalization of ErbB1, urokinase-type plasminogen activator and uPAR-mediated signaling, PDGFR-beta signaling pathway, EGF receptor (ErbB1) signaling pathway, and class I PI3K signaling events, which may be associated with SCI-TBI-HO. Conclusions These results enhance our understanding of the molecular mechanisms of SCI-TBI-HO and offer new leads for researchers and innovative therapeutic strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom