z-logo
open-access-imgOpen Access
Investigating Los Angeles’ urban roadway network from a biologically-formed perspective
Author(s) -
Sophia Deen,
Tatiana Kuzmenko,
Hossein Asghari,
Demian A. Willette
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.8238
Subject(s) - slime mold , redundancy (engineering) , metropolitan area , foraging , computer science , biological network , resilience (materials science) , geography , ecology , biology , archaeology , physics , thermodynamics , computational biology , microbiology and biotechnology , operating system
The evolution of networks is constrained by spatial properties of the environment; a characterization that is true in both biological and built networks. Hence built networks such as urban streets can be compared to biological networks to reveal differences in efficiency and complexity. This study assessed foraging networks created by the slime-mold Physarium polycephalum on proportional 3D-printed topographic maps of metropolitan city of Los Angeles, California. Rapidly-generated isomorphic solutions were found to be consistently and statistically shorter than existing roadways in system length. Slime mold also allocated resources to supporting key nodes, analogous to how heavy traffic flows through major intersections. Further, chemical deterrents inhibited exploration of slime mold in selected areas and allows for testing of network redundancy and system resilience, such as after an earthquake or wildfire.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom