Competing endogenous RNA (ceRNA) hypothetic model based on comprehensive analysis of long non-coding RNA expression in lung adenocarcinoma
Author(s) -
Xiwen Wang,
Rui Su,
Qiqiang Guo,
Jia Liu,
Banlai Ruan,
Guiling Wang
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.8024
Subject(s) - competing endogenous rna , kegg , biology , long non coding rna , adenocarcinoma , microrna , gene , computational biology , survival analysis , rna , cancer research , bioinformatics , cancer , gene expression , genetics , medicine , gene ontology
Background Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer with high malignancy and bad prognosis, consisted of lung adenocarcinomas (LUAD) and lung squamous cell carcinomas (LUSC) chiefly. Multiple studies have indicated that competing endogenous RNA (ceRNA) network centered long noncoding RNAs (lncRNAs) can regulate gene expression and the progression of various cancers. However, the research about lncRNAs-mediated ceRNA network in LUAD is still lacking. Methods In this study, we analyzed the RNA-seq database from The Cancer Genome Atlas (TCGA) and obtained dysregulated lncRNAs in NSCLC, then further identified survival associated lncRNAs through Kaplan–Meier analysis. Quantitative real time PCR (qRT-PCR) was performed to confirm their expression in LUAD tissues and cell lines. The ceRNA networks were constructed based on DIANA-TarBase and TargetScan databases and visualized with OmicShare tools. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to investigate the potential function of ceRNA networks. Results In total, 1,437 and 1,699 lncRNAs were found to be up-regulated in LUAD and LUSC respectively with 895 lncRNAs overlapping (|log2FC| > 3, adjusted P value <0.01). Among which, 222 lncRNAs and 46 lncRNAs were associated with the overall survival (OS) of LUAD and LUSC, and 18 out of 222 up-regulated lncRNAs were found to have inverse correlation with LUAD patients’ OS (|log2FC| > 3, adjusted P value < 0.02). We selected 3 lncRNAs (CASC8, LINC01842 and VPS9D1-AS1) out of these 18 lncRNAs and confirmed their overexpression in lung cancer tissues and cells. CeRNA networks were further constructed centered CASC8, LINC01842 and VPS9D1-AS1 with 3 miRNAs and 100 mRNAs included respectively. Conclusion Through comprehensively analyses of TCGA, our study identified specific lncRNAs as candidate diagnostic and prognostic biomarkers for LUAD. The novel ceRNA network we created provided more insights into the regulatory mechanisms underlying LUAD.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom