z-logo
open-access-imgOpen Access
Toward a clinical real time tissue ablation technology: combining electroporation and electrolysis (E2)
Author(s) -
Enric Guenther,
Nina Klein,
Paul Mikus,
Florin Botea,
Mihail Pautov,
Franco Lugnani,
Matteo Macchioro,
Irinel Popescu,
Michael K. Stehling,
Boris Rubinsky
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7985
Subject(s) - electrochemotherapy , irreversible electroporation , ablation , electroporation , biomedical engineering , waveform , materials science , lumen (anatomy) , percutaneous , medicine , voltage , chemistry , surgery , electrical engineering , biochemistry , gene , engineering
Background Percutaneous image-guided tissue ablation (IGA) plays a growing role in the clinical management of solid malignancies. Electroporation is used for IGA in several modalities: irreversible electroporation (IRE), and reversible electroporation with chemotoxic drugs, called electrochemotherapy (ECT). It was shown that the combination of electrolysis and electroporation—E2—affords tissue ablation with greater efficiency, that is, lower voltages, lower energy and shorter procedure times than IRE and without the need for chemotoxic additives as in ECT. Methods A new E2 waveform was designed that delivers optimal doses of electroporation and electrolysis in a single waveform. A series of experiments were performed in the liver of pigs to evaluate E2 in the context of clinical applications. The goal was to find initial parameter boundaries in terms of electrical field, pulse duration and charge as well as tissue behavior to enable real time tissue ablation of clinically relevant volumes. Results Histological results show that a single several hundred millisecond long E2 waveform can ablate large volume of tissue at relatively low voltages while preserving the integrity of large blood vessels and lumen structures in the ablation zone without the use of chemotoxic drugs or paralyzing drugs during anesthesia. This could translate clinically into much shorter treatment times and ease of use compared to other techniques that are currently applied.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom