z-logo
open-access-imgOpen Access
Effects of digging by a native and introduced ecosystem engineer on soil physical and chemical properties in temperate grassy woodland
Author(s) -
Catherine E. Ross,
Nicola T. Munro,
Philip S. Barton,
Maldwyn J. Evans,
J. Gillen,
Ben Macdonald,
S. McIntyre,
Saul A. Cunningham,
Adrian D. Manning
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7506
Subject(s) - digging , ecosystem , woodland , ecology , foraging , ecosystem engineer , arid , vegetation (pathology) , biology , temperate climate , soil biology , environmental science , soil water , geography , medicine , archaeology , pathology
Temperate grasslands and woodlands are the focus of extensive restoration efforts worldwide. Reintroduction of locally extinct soil-foraging and burrowing animals has been suggested as a means to restore soil function in these ecosystems. Yet little is known about the physical and chemical effects of digging on soil over time and how these effects differ between species of digging animal, vegetation types or ecosystems. We compared foraging pits of a native reintroduced marsupial, the eastern bettong ( Bettongia gaimardi ) and that of the exotic European rabbit ( Oryctolagus cuniculus ). We simulated pits of these animals and measured pit dimensions and soil chemical properties over a period of 2 years. We showed that bettong and rabbit pits differed in their morphology and longevity, and that pits had a strong moderating effect on soil surface temperatures. Over 75% of the simulated pits were still visible after 2 years, and bettong pits infilled faster than rabbit pits. Bettong pits reduced diurnal temperature range by up to 25 °C compared to the soil surface. We did not find any effects of digging on soil chemistry that were consistent across vegetation types, between bettong and rabbit pits, and with time since digging, which is contrary to studies conducted in arid biomes. Our findings show that animal foraging pits in temperate ecosystems cause physical alteration of the soil surface and microclimatic conditions rather than nutrient changes often observed in arid areas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom