z-logo
open-access-imgOpen Access
Evaluation of the effects of the green nanoparticles zinc oxide on monosodium glutamate-induced toxicity in the brain of rats
Author(s) -
Reham Z. Hamza,
Fawziah A. AlSalmi,
Nahla S. ElShenawy
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7460
Subject(s) - monosodium glutamate , oxidative stress , superoxide dismutase , glutathione , pharmacology , glutathione peroxidase , chemistry , toxicity , antioxidant , glutamate receptor , green tea extract , neurotransmitter , endocrinology , medicine , biochemistry , food science , green tea , receptor , enzyme
Background Monosodium glutamate (MSG) is used extensively as a food additive in the diets of many countries around the world. Aim of the study Our aim was to determine the effects of green zinc oxide nanoparticles on MSG-induced oxidative damage, neurotransmitter changes, and histopathological alternation in the cerebral cortexes of rats. Methods MSG was administered orally at two doses of 6 and 17.5 mg/kg body weight. The higher dose was associated with a significant decline in the activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as the levels of brain-derived neurotrophic factor (BDNF) and glutathione (GSH) in the cerebral cortex of rats. Results The administration of zinc oxide nanoparticles/green tea extract (ZnO NPs/GTE) to 17.5 mg/kg MSG-treated rats was associated with significant improvements in all parameters previously shown to be altered by MSG. The higher dose of MSG induced significant histopathological variation in brain tissue. Co-treatment of rats with ZnO NPs/GTE and MSG-HD inhibited the reduction of neurotransmitters and acetylcholinesterase by MSG. Conclusions ZnO NPs/GTE have the potential to protect against oxidative stress and neuronal necrosis induced by MSG-HD. ZnO NPs/GTE conferred a greater benefit than the control treatment or ZnO NPs or GTE administered separately.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom