z-logo
open-access-imgOpen Access
Antimicrobial photodynamic therapy on Staphylococcus aureus and Escherichia coli using malachite green encapsulated mesoporous silica nanoparticles: an in vitro study
Author(s) -
Parasuraman Paramanantham,
Siddhardha Busi,
Sruthil Lal SB,
Alok Sharan,
Abdullah A. Alyousef,
Mohammed Saeed Al Dosary,
Mohammed Arshad,
Asad Syed
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7454
Subject(s) - malachite green , staphylococcus aureus , antimicrobial , mesoporous silica , microbiology and biotechnology , escherichia coli , biofilm , chemistry , photodynamic therapy , bacteria , biology , mesoporous material , adsorption , biochemistry , organic chemistry , gene , genetics , catalysis
Background Rise in the number of healthcare associated or hospital acquired infections is a major problem affecting the global healthcare sector. We evaluated superior antibacterial and antibiofilm photodynamic therapy (aPDT) using malachite green encapsulated mesoporous silica nanoparticles (MG-MSN) against Staphylococcus aureus and Escherichia coli , which are known to be major causative agents of nosocomial infections. Methods Malachite green (MG) was encapsulated on mesoporous silica nanoparticles (MSN). Fourier-transform infrared spectroscopy, Transmission electron microscopy, and spectroscopic analysis were performed to characterize the MG-MSN. The antimicrobial efficacies of MSN, MG, and MG-MSN were investigated and the results were recorded. Results MG-MSN was effective against both the tested bacteria. S. aureus was more phototoxic to MG-MSN compared to E. coli . The antibiofilm efficacy of MG-MSN on E. coli and S. aureus was also studied. Biofilm inhibition was 65.68 ± 2.62% in E. coli and 79.66 ± 3.82% in S. aureus . Cell viability assay, exopolysaccharides quantification, and confocal laser scanning microscopy studies also revealed the enhanced antibiofilm activity of MG-MSN when used as a potential photosensitizer for aPDT. This study can be extended to eradicate these strains from localized superficial infections and medical appliances, preventing nosocomial infections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom