z-logo
open-access-imgOpen Access
Short-term effects of thinning on the understory natural environment of mixed broadleaf-conifer forest in Changbai Mountain area, Northeast China
Author(s) -
Qiang Liu,
Yue Sun,
Gerong Wang,
Fushan Cheng,
Fucai Xia
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7400
Subject(s) - thinning , understory , environmental science , microclimate , water content , soil water , ecology , soil science , canopy , geology , biology , geotechnical engineering
Background The understory natural environment is critical in affecting the succession and recovery process of vegetation, stand structure, and species composition of forest. The thinning intensity could significantly change the forest microclimates and soil properties, therefore, to analyze the effects of thinning intensity on the understory natural environment of forest is of important significance for promoting the ecological benefits of thinning. Methods A total of 16 fixed sample plots with different thinning intensities were established in the mixed broadleaf-conifer forest in Jiaohe, situated in Changbai Mountain area, Northeast China, and the forest microclimates and soil properties were investigated after 4 years since the establishment of the sample plots. Results The results showed that the high intensity thinning significantly decreased the leaf area index from 4.13 (unthinned plot) to 2.21 (high intensity thinned plot), and the air temperature was increased by thinning from May to July. Comparing with the unthinned plot, thinning caused a rise of temperature (ranging from 2.11 to 6.74 °C, depending on the intensity of thinning) in May. However, it showed cooling effect in September and October. Besides, the air moisture of thinning plots was lower than the control plot in May and October, when the density of leaves is lower in the forest, and it even decreased 20.27% after thinning. The thinning intensity had no significantly effect on water content and organic carbon in forest soils, and only the bulk density in the top-layer soils in high intensity thinning plot was remarkably increased. Total nitrogen in soil was increased by different intensities of thinning, and the availability of nutrients for nitrogen, phosphorus and potassium in some soils were also affected.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom