z-logo
open-access-imgOpen Access
Observations on carapace color change in the juvenile big-headed turtle (Platysternon megacephalum)
Author(s) -
Dainan Cao,
Yan Ge,
Yufeng Wei,
Haoran Duan,
Shiping Gong
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7331
Subject(s) - carapace , biology , turtle (robot) , melanin , anatomy , trichome , juvenile , background color , zoology , botany , fishery , ecology , crustacean , genetics , computer science , computer vision
The carapace color of newborn big-headed turtles ( Platysternon megacephalum ) is polymorphic and usually consists of two phenotypes: yellowish brown and olive green. As the turtles grew, over the first year of life, its carapace gradually turned from yellowish brown to chestnut brown, or from olive green to dark brown, depending on the phenotype. Meanwhile, the turtle’s plastron remained an orange and black pattern and did not change much. In this study, we primarily used HE staining to observe the carapace color change with age in big-headed turtle juveniles. We took the carapace marginal scute tissues twice from the same turtles before and after the carapace color change. Histological observations show that in the marginal scutes of the four tested turtles with different carapace color phenotypes, melanin granules are all concentrated in the dermal layer underneath the dorsal corneous layer, but rarely on the ventral side. Melanin deposits in the dorsal corneous layer were found to increase as the corneous layers thickened, while the melanin deposits in the ventral corneous layer did not change significantly. However, there was no significant difference in melanin deposition in the epidermis and dermis of the carapace among the yellowish brown, chestnut brown, olive green, and dark brown big-headed turtles. The results of our study indicate that the carapace color darkening in big-headed turtles may not be due to changes in melanin content of the carapace, but is the result of melanin accumulation and superposition in the dorsal corneous layer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom