z-logo
open-access-imgOpen Access
Mitochondrial genomics of human pathogenic parasiteLeishmania(Viannia)panamensis
Author(s) -
Daniel Alfonso Urrea,
Omar TrianaChávez,
Juan F. Álzate
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7235
Subject(s) - minicircle , biology , kinetoplast , genetics , comparative genomics , mitochondrial dna , genome , leishmania , synteny , genomics , evolutionary biology , gene , parasite hosting , dna , world wide web , computer science
Background The human parasite Leishmania (V.) panamensis is one of the pathogenic species responsible for cutaneous leishmaniasis in Central and South America. Despite its importance in molecular parasitology, its mitochondrial genome, divided into minicircles and maxicircles, haven’t been described so far. Methods Using NGS-based sequencing (454 and ILLUMINA), and combining de novo genome assembly and mapping strategies, we report the maxicircle kDNA annotated genome of L. (V.) panamensis , the first reference of this molecule for the subgenus Viannia . A comparative genomics approach is performed against other Leishmania and Trypanosoma species. Results The results show synteny of mitochondrial genes of L. (V.) panamensis with other kinetoplastids. It was also possible to identify nucleotide variants within the coding regions of the maxicircle, shared among some of them and others specific to each strain. Furthermore, we compared the minicircles kDNA sequences of two strains and the results show that the conserved and divergent regions of the minicircles exhibit strain-specific associations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom