z-logo
open-access-imgOpen Access
Genome-wide analyses of the bHLH gene family reveals structural and functional characteristics in the aquatic plantNelumbo nucifera
Author(s) -
Tianyu Mao,
Yaoyao Liu,
Huanhuan Zhu,
Jie Zhang,
Ju-Xiang Yang,
Qiang Fu,
Nian Wang,
Ze Wang
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7153
Subject(s) - nelumbo nucifera , biology , gene , genome , lotus , botany , computational biology , genetics , evolutionary biology
Lotus ( Nelumbo nucifera Gaertn.) is an economically important aquatic plant with multiple applications, but water salinity and cold stress seriously affect lotus yield and distribution. The basic helix-loop-helix (bHLH) transcription factors (TFs) play a vital role in plant growth and development, metabolic regulation processes and responses to environmental changes. However, systematic analyses of the bHLH TF family in lotus has not yet been reported. Here, we report the identification and description of bHLH genes in lotus ( NnbHLHs ) with a focus on functional prediction, particularly for those involved in stress resistance. In all, 115 NnbHLHs were identified in the lotus genome and classified into 19 subfamilies. The chromosomal distribution, physicochemical properties, bHLH domain, conserved motif compositions and evolution of these 115 NnbHLHs were further analyzed. To better understand the functions of the lotus bHLH family, gene ontology, cis-element, and phylogenetic analyses were conducted. NnbHLHs were predicted to be involved in plant development, metabolic regulation and responses to stress, in accordance with previous findings. Overall, 15 NnbHLHs were further investigated with functional prediction via quantitative real-time PCR analyses. Meanwhile, expression profiles of NnbHLHs in four tissues indicated that many NnbHLHs showed tissue preference in their expression. This study is supposed to provide a good foundation for further research into the functions and evolution of NnbHLHs , and identifies candidate genes for stress resistance in lotus.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom