z-logo
open-access-imgOpen Access
Automatic optic disc detection in colour fundus images by means of multispectral analysis and information content
Author(s) -
M. Elena Martínez-Pérez,
Nicholas Witt,
Kim H. Parker,
Alun D. Hughes,
Simon Thom
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.7119
Subject(s) - multispectral image , computer science , artificial intelligence , channel (broadcasting) , hough transform , rgb color model , fundus (uterus) , pattern recognition (psychology) , computer vision , image (mathematics) , medicine , computer network , ophthalmology
The optic disc (OD) in retinal fundus images is widely used as a reference in computer-based systems for the measurement of the severity of retinal disease. A number of algorithms have been published in the past 5 years to locate and measure the OD in digital fundus images. Our proposed algorithm, automatically: (i) uses the three channels (RGB) of the digital colour image to locate the region of interest (ROI) where the OD lies, (ii) measures the Shannon information content per channel in the ROI, to decide which channel is most appropriate for searching for the OD centre using the circular Hough transform. A series of evaluations were undertaken to test our hypothesis that using the three channels gives a better performance than a single channel. Three different databases were used for evaluation purposes with a total of 2,371 colour images giving a misdetection error of 3% in the localisation of the centre of the OD. We find that the area determined by our algorithm which assumes that the OD is circular, is similar to that found by other algorithms that detected the shape of the OD. Five metrics were measured for comparison with other recent studies. Combining the two databases where expert delineation of the OD is available (1,240 images), the average results for our multispectral algorithm are: TPR = 0.879, FPR = 0.003, Accuracy = 0.994, Overlap = 80.6% and Dice index = 0.878.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom