z-logo
open-access-imgOpen Access
Diet and mitochondrial DNA haplotype of a sperm whale (Physeter macrocephalus) found dead off Jurong Island, Singapore
Author(s) -
Marcus A. H. Chua,
David Lane,
Seng Keat Ooi,
Serene Hui Xin Tay,
Tsunemi Kubodera
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.6705
Subject(s) - sperm whale , mitochondrial dna , haplotype , sperm , biology , whale , zoology , fishery , genetics , gene , genotype , biochemistry , myoglobin
Despite numerous studies across the large geographic range of the sperm whale ( Physeter macrocephalus ), little is known about the diet and mitochondrial DNA haplotypes of this strongly female philopatric species in waters off Southeast Asia. A female sperm whale found dead in Singapore waters provided the opportunity to study her diet and mitochondrial DNA haplotype. Here we report on the identification of stomach contents and mitochondrial DNA haplotype of this individual, and we include coastal hydrodynamic modelling to determine the possible geographic origin of the whale. At least 28 species of prey were eaten by this adult female whale, most of which were cephalopods. The mesopelagic squids Taonius pavo, Histioteuthis pacifica, Chiroteuthis imperator, and Ancistrocheirus lesueurii made up over 65% of the whale’s stomach contents. Plastic debris was also found in the whale’s stomach. Based on the diet, genetics, and coastal hydrodynamic modelling that suggest an easterly drift of the whale carcass over several days, the dead sperm whale in Singapore probably originated from a pod in the Southern Indian Ocean. This study provides an increase in the understanding the diet and natural history of the sperm whale in Southeast Asia. The combined analyses of stomach contents, DNA, and hydrodynamic modeling could provide a context to future studies on the sperm whale strandings, and have broader applicability for other marine mammals in the region.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom