Photo-hydrogen and lipid production from lactate, acetate, butyrate, and sugar manufacturing wastewater with an alternative nitrogen source byRhodobactersp.KKU-PS1
Author(s) -
Thitirut Assawamongkholsiri,
Alissara Reungsang,
Sureewan Sittijunda
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.6653
Subject(s) - chemistry , hydrogen production , sodium acetate , fatty acid , hydrogen , sugar , food science , nuclear chemistry , nitrogen , butyrate , biochemistry , chromatography , organic chemistry , fermentation
Photo-hydrogen and lipid production from individual synthetic volatile fatty acids (VFAs) and sugar manufacturing wastewater (SMW) by Rhodobacter sp. KKU-PS1 with sodium glutamate or Aji-L (i.e., waste from the process of crystallizing monosodium glutamate) as a nitrogen source was investigated. Using individual synthetic VFAs, the maximum hydrogen production was achieved with Aji-L as a nitrogen source rather than sodium glutamate. The maximum hydrogen production was 1,727, 754 and 1,353 mL H 2 /L, respectively, using 25 mM of lactate, 40 mM of acetate and 15mM of butyrate as substrates. Under these conditions, lipid was produced in the range of 10.6–16.9% (w/w). Subsequently, photo-hydrogen and lipid production from SMW using Aji-L as nitrogen source was conducted. Maximal hydrogen production and hydrogen yields of 1,672 mL H 2 /L and 1.92 mol H 2 /mol substrate, respectively, were obtained. Additionally, lipid content and lipid production of 21.3% (w/w) and 475 mg lipid/L were achieved. The analysis of the lipid and fatty acid components revealed that triacyglycerol (TAG) and C18:1 methyl ester were the main lipid and fatty acid components, respectively, found in Rhodobacter sp. KKU-PS1 cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom