z-logo
open-access-imgOpen Access
From data compilation to model validation: a comprehensive analysis of a full deep-sea ecosystem model of the Chatham Rise
Author(s) -
Vidette McGregor,
Péter Horn,
Elizabeth A. Fulton,
Matthew R. Dunn
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.6517
Subject(s) - bootstrapping (finance) , ecosystem , ecosystem model , fisheries management , stock assessment , ecosystem based management , fishing , marine ecosystem , fishery , population , stock (firearms) , computer science , environmental science , ecology , geography , econometrics , biology , demography , archaeology , sociology , economics
The Chatham Rise is a highly productive deep-sea ecosystem that supports numerous substantial commercial fisheries, and is a likely candidate for an ecosystem based approach to fisheries management in New Zealand. We present the first end-to-end ecosystem model of the Chatham Rise, which is also to the best of our knowledge, the first end-to-end ecosystem model of any deep-sea ecosystem. We describe the process of data compilation through to model validation and analyse the importance of knowledge gaps with respect to model dynamics and results. The model produces very similar results to fisheries stock assessment models for key fisheries species, and the population dynamics and system interactions are realistic. Confidence intervals based on bootstrapping oceanographic variables are produced. The model components that have knowledge gaps and are most likely to influence model results were oceanographic variables, and the aggregate species groups ‘seabird’ and ‘cetacean other’. We recommend applications of the model, such as forecasting biomasses under various fishing regimes, include alternatives that vary these components.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom