z-logo
open-access-imgOpen Access
Some methods to improve the utility of conditioned Latin hypercube sampling
Author(s) -
Brendan Malone,
Budiman Minansy,
Colby Brungard
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.6451
Subject(s) - latin hypercube sampling , sampling (signal processing) , computer science , sample (material) , field (mathematics) , operations research , statistics , mathematics , monte carlo method , filter (signal processing) , chemistry , chromatography , pure mathematics , computer vision
The conditioned Latin hypercube sampling (cLHS) algorithm is popularly used for planning field sampling surveys in order to understand the spatial behavior of natural phenomena such as soils. This technical note collates, summarizes, and extends existing solutions to problems that field scientists face when using cLHS. These problems include optimizing the sample size, re-locating sites when an original site is deemed inaccessible, and how to account for existing sample data, so that under-sampled areas can be prioritized for sampling. These solutions, which we also share as individual R scripts, will facilitate much wider application of what has been a very useful sampling algorithm for scientific investigation of soil spatial variation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom