z-logo
open-access-imgOpen Access
Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range
Author(s) -
Dandan Cheng,
Zhongsai Tian,
Liang Feng,
Lin Xu,
Hongmei Wang
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.6162
Subject(s) - biology , botany , proteobacteria , firmicutes , actinobacteria , gemmatimonadetes , rhizosphere , acidobacteria , senecio , bacteria , 16s ribosomal rna , genetics
Increasing evidence has confirmed the importance of plant-associated bacteria for plant growth and productivity, and thus it is hypothesized that interactions between bacteria and alien plants might play an important role in plant invasions. However, the diversity of the bacterial communities associated with invasive plants is poorly understood. We therefore investigated the diversity of rhizospheric and endophytic bacteria associated with the invasive annual plant Senecio vulgaris L. (Asteraceae) based on 16S rRNA gene data obtained from 57 samples of four Senecio vulgaris populations in a subtropical mountainous area in central China. Significant differences in diversity were observed between plant compartments. Specifically, the rhizosphere harbored many more bacterial operational taxonomic units and showed higher alpha diversity than the leaf and root endospheres. The relative abundance profiles of the bacterial community composition differed substantially between the compartments and populations, especially at the phylum and family levels. However, the top five phyla (Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Acidobacteria) accounted for more than 90% of all the bacterial communities. Moreover, similar endophytic communities with a shared core set of bacteria were observed from different Senecio vulgaris populations. Heavy-metal-resistant, phosphate-solubilizing bacteria ( Brevundimonas diminuta ), nitrogen-fixing bacteria ( Rhizobium leguminosarum ), and cold-resistant bacteria ( Exiguobacterium sibiricum ) were present in the endosphere at relatively high abundance. This study, which reveals the structure of bacterial communities and their putative function in invasive Senecio vulgaris plants, is the first step in investigating the role of plant–bacteria interactions in the invasion of this species in China.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom