Secreted Frizzled-related protein 4 inhibits the regeneration of hair follicles
Author(s) -
Haiying Guo,
Yizhan Xing,
Fang Deng,
Ke Yang,
Yuhong Li
Publication year - 2019
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.6153
Subject(s) - hair follicle , hair cycle , outer root sheath , regeneration (biology) , immunostaining , frizzled , melanocyte , microbiology and biotechnology , biology , wnt signaling pathway , keratin , endocrinology , anatomy , medicine , chemistry , immunohistochemistry , immunology , signal transduction , melanoma , paleontology , genetics
Secreted Frizzled-related Protein 4 (sFRP4) belongs to Wnt inhibitors. Previously, we reported that sFRP4 inhibited the differentiation of melanocyte. Here, by using of immunostaining, we showed that sFRP4 is expressed in both human and mouse hair follicles, especially in the outer root sheath and inner root sheath. To reveal the role of sFRP4 in hair follicle growth and hair cycle, we induced synchronized hair cycle in the dorsal skin of mice by depilation, and injected sFRP4 intradermally into the skin. By hematoxylin and eosin staining, we found that the regeneration of hair follicles was inhibited by sFRP4. However, the structure of hair follicles remained complete. Compared with phosphate buffer saline-treated hair follicles, the sFRP4-treated hair follicles still had the same expression pattern of keratins. Our findings reveal that sFRP4 inhibits but not blocks the regeneration of hair follicles, and supply a potential therapeutic application to treat hair follicle regeneration disorders.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom