z-logo
open-access-imgOpen Access
A direct approach to estimating false discovery rates conditional on covariates
Author(s) -
Simina M. Boca,
Jeffrey T. Leek
Publication year - 2018
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.6035
Subject(s) - false discovery rate , covariate , multiple comparisons problem , null hypothesis , estimator , bioconductor , statistics , statistical hypothesis testing , regression , null model , type i and type ii errors , r package , sample size determination
Modern scientific studies from many diverse areas of research abound with multiple hypothesis testing concerns. The false discovery rate (FDR) is one of the most commonly used approaches for measuring and controlling error rates when performing multiple tests. Adaptive FDRs rely on an estimate of the proportion of null hypotheses among all the hypotheses being tested. This proportion is typically estimated once for each collection of hypotheses. Here, we propose a regression framework to estimate the proportion of null hypotheses conditional on observed covariates. This may then be used as a multiplication factor with the Benjamini–Hochberg adjusted p -values, leading to a plug-in FDR estimator. We apply our method to a genome-wise association meta-analysis for body mass index. In our framework, we are able to use the sample sizes for the individual genomic loci and the minor allele frequencies as covariates. We further evaluate our approach via a number of simulation scenarios. We provide an implementation of this novel method for estimating the proportion of null hypotheses in a regression framework as part of the Bioconductor package swfdr.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom