z-logo
open-access-imgOpen Access
Formation of sclerotia inSclerotinia ginsengand composition of the sclerotial exudate
Author(s) -
Dan Wang,
Junfan Fu,
Rujun Zhou,
Zibo Li,
Yujiao Xie,
Xinran Liu,
Yueling Han
Publication year - 2018
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.6009
Subject(s) - exudate , mycelium , chemistry , food science , organic acid , botany , biology , biochemistry
Background Sclerotinia ginseng is a major devastating soil-borne pathogen of ginseng that can cause irreparable damage and large economic losses. This pathogen produces sclerotia, which are among the most persistent resting structures produced by filamentous fungi. The production of an exudate is a common feature of sclerotial development. Methods S. ginseng was cultured on 10 different media and the following parameters were measured: mycelial growth rate (mm/day), initial formation time of exudate droplets, total quantity of exudate, number of sclerotia per dish, and sclerotial fresh/dry weight. The composition of the sclerotial exudate was analyzed using four methods (high performance liquid chromatography, gas chromatography-mass spectrometry, flame atomic absorption spectrometry, and Nessler’s reagent spectrophotometry). Results We found that PDA was the optimal medium for exudate production, while SDA medium resulted in the highest mycelial growth rate. The earliest emergence of exudate droplets from sclerotia was on OA-YE and V8 media. The largest amount of sclerotia and the smallest sclerotia were produced on V8 medium. The maximum and minimum dry/fresh weight were obtained on MEA medium and V8 medium, respectively. The exudate contained organic acids (oxalic acid, gallic acid, ferulic acid, vanillic acid, caffeic acid, and tannic acid), carbohydrates (inositol, glucose, and trehalose), various ions (potassium, sodium, and magnesium), and ammonia. Discussion The functions of the identified compounds are discussed within the context of pathogenicity, sclerotial development, and antimicrobial activity. Our findings provide information about the production of sclerotia and the composition of sclerotial exudate that may be useful to develop strategies to control this disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom