z-logo
open-access-imgOpen Access
Intraspecific phenotypic variation in life history traits ofDaphnia galeatapopulations in response to fish kairomones
Author(s) -
Verena Tams,
Jennifer Lüneburg,
Laura Seddar,
Jan-Phillip Detampel,
Mathilde Cordellier
Publication year - 2018
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.5746
Subject(s) - daphnia galeata , intraspecific competition , kairomone , biology , daphnia , cladocera , zoology , fish <actinopterygii> , branchiopoda , ecology , crustacean , fishery , predation
Phenotypic plasticity is the ability of a genotype to produce different phenotypes depending on the environment. It has an influence on the adaptive potential to environmental change and the capability to adapt locally. Adaptation to environmental change happens at the population level, thereby contributing to genotypic and phenotypic variation within a species. Predation is an important ecological factor structuring communities and maintaining species diversity. Prey developed different strategies to reduce their vulnerability to predators by changing their behaviour, their morphology or their life history. Predator-induced life history responses in Daphnia have been investigated for decades, but intra-and inter-population variability was rarely addressed explicitly. We addressed this issue by conducting a common garden experiment with 24 clonal lines of European Daphnia galeata originating from four populations, each represented by six clonal lines. We recorded life history traits in the absence and presence of fish kairomones. Additionally, we looked at the shape of experimental individuals by conducting a geometric morphometric analysis, thus assessing predator-induced morphometric changes. Our data revealed high intraspecific phenotypic variation within and between four D. galeata populations, the potential to locally adapt to a vertebrate predator regime as well as an effect of the fish kairomones on morphology of D. galeata .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom