z-logo
open-access-imgOpen Access
ShapeGTB: the role of local DNA shape in prioritization of functional variants in human promoters with machine learning
Author(s) -
Maja Małkowska,
Julian Zubek,
Dariusz Plewczyński,
Lucjan Wyrwicz
Publication year - 2018
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.5742
Subject(s) - prioritization , computational biology , biology , genetics , promoter , regulatory sequence , classifier (uml) , dna binding site , sequence (biology) , coding region , gene , machine learning , artificial intelligence , computer science , transcription factor , gene expression , engineering , management science
Motivation The identification of functional sequence variations in regulatory DNA regions is one of the major challenges of modern genetics. Here, we report results of a combined multifactor analysis of properties characterizing functional sequence variants located in promoter regions of genes. Results We demonstrate that GC-content of the local sequence fragments and local DNA shape features play significant role in prioritization of functional variants and outscore features related to histone modifications, transcription factors binding sites, or evolutionary conservation descriptors. Those observations allowed us to build specialized machine learning classifier identifying functional single nucleotide polymorphisms within promoter regions—ShapeGTB. We compared our method with more general tools predicting pathogenicity of all non-coding variants. ShapeGTB outperformed them by a wide margin (average precision 0.93 vs. 0.47–0.55). On the external validation set based on ClinVar database it displayed worse performance but was still competitive with other methods (average precision 0.47 vs. 0.23–0.42). Such results suggest unique characteristics of mutations located within promoter regions and are a promising signal for the development of more accurate variant prioritization tools in the future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom