z-logo
open-access-imgOpen Access
Genome-wide identification and characterization of non-specific lipid transfer proteins in cabbage
Author(s) -
Jialei Ji,
Honghao Lv,
Limei Yang,
Zhiyuan Fang,
Mu Zhuang,
Yangyong Zhang,
Yumei Liu,
Zhansheng Li
Publication year - 2018
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.5379
Subject(s) - plant lipid transfer proteins , biology , gene , homology modeling , gene family , homology (biology) , subfamily , genetics , genome , abiotic component , biotic stress , abiotic stress , biochemistry , enzyme , paleontology
Plant non-specific lipid transfer proteins (nsLTPs) are a group of small, secreted proteins that can reversibly bind and transport hydrophobic molecules. NsLTPs play an important role in plant development and resistance to stress. To date, little is known about the nsLTP family in cabbage. In this study, a total of 89 nsLTP genes were identified via comprehensive research on the cabbage genome. These cabbage nsLTPs were classified into six types (1, 2, C, D, E and G). The gene structure, physical and chemical characteristics, homology, conserved motifs, subcellular localization, tertiary structure and phylogeny of the cabbage nsLTPs were comprehensively investigated. Spatial expression analysis revealed that most of the identified nsLTP genes were positively expressed in cabbage, and many of them exhibited patterns of differential and tissue-specific expression. The expression patterns of the nsLTP genes in response to biotic and abiotic stresses were also investigated. Numerous nsLTP genes in cabbage were found to be related to the resistance to stress. Moreover, the expression patterns of some nsLTP paralogs in cabbage showed evident divergence. This study promotes the understanding of nsLTPs characteristics in cabbage and lays the foundation for further functional studies investigating cabbage nsLTPs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom