z-logo
open-access-imgOpen Access
Motor self-regulation in goats (Capra aegagrus hircus) in a detour-reaching task
Author(s) -
Jan Langbein
Publication year - 2018
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.5139
Subject(s) - ungulate , psychology , task (project management) , capra hircus , cognition , cognitive psychology , biology , neuroscience , ecology , zoology , habitat , management , economics
Motor self-regulation is the ability to inhibit a prepotent response to a salient cue in favour of a more appropriate response. Motor self-regulation is an important component of the processes that interact to generate effective inhibitory control of behaviour, and is theorized to be a prerequisite of complex cognitive abilities in humans and other animals. In a large comparative study using the cylinder task, motor self-regulation was studied in 36 different species, mostly birds and primates. To broaden the range of species to comprehensively evaluate this phenomenon, motor self-regulation was studied in the domestic goat, which is a social ungulate species and moderate food specialist. Using the cylinder task, goats were first trained to perform a detour-reaching response to retrieve a reward from an opaque cylinder. Subsequently, an otherwise identical transparent cylinder was substituted for the opaque cylinder over 10 test trials. The goats’ ability to resist approaching the visible reward directly by touching the cylinder and to retain the trained detour-reaching response was measured. The results indicated that goats showed motor self-regulation at a level comparable to or better than that of many of the bird and mammal species tested to date. However, the individual reaction patterns revealed large intra- and inter-individual variability regarding motor self-regulation. An improvement across trials was observed only in latency to make contact with the reward; no improvement in the proportion of accurate trials was observed. A short, distinct pointing gesture by the experimenter during baiting did not have any impact on the side of the cylinder to which the goats detoured. In half of goats, individual side biases were observed when detouring to the side of the cylinder, but there was no bias at the population level for either the left or right side. The results underline the need for a detailed examination of individual performance and additional measures to achieve a complete understanding of animal performance in motor self-regulation tasks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom